Correction to: Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves
نویسندگان
چکیده
منابع مشابه
Topology optimization in B-spline space
Abstract In this paper, we present a new form of density based topology optimization where the design space is restricted to the B-spline space. An arbitrarily shaped design domain is embedded into a rectangular domain in which tensor-product B-splines are used to represent the density field. We show that, with proper choice of B-spline degrees and knot spans, the B-spline design space is free ...
متن کاملTranslational Covering of Closed Planar Cubic B-Spline Curves
Spline curves are useful in a variety of geometric modeling and graphics applications and covering problems abound in practical settings. This work defines a class of covering decision problems for shapes bounded by spline curves. As a first step in addressing these problems, this paper treats translational spline covering for planar, uniform, cubic B-splines. Inner and outer polygonal approxim...
متن کاملSymbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis
We consider the stiffness matrices coming from the Galerkin B-spline isogeometric analysis approximation of classical elliptic problems. By exploiting specific spectral properties compactly described by a symbol, we design efficient multigrid methods for the fast solution of the related linear systems. We prove the optimality of the two-grid methods (in the sense that their convergence rate is ...
متن کاملNUAT B-spline curves
This paper presents a new kind of splines, called non-uniform algebraic-trigonometric B-splines (NUAT B-splines), generated over the space spanned by {1, t, . . . , tk−3, cos t, sin t} in which k is an arbitrary integer larger than or equal to 3. We show that the NUAT B-splines share most properties of the usual polynomial B-splines. The subdivision formulae of this new kind of curves are given...
متن کاملB-Spline Curves
However, we cannot easily control the curve locally. That is, any change to an individual control point will cause changes in the curve along its full length. In addition, we cannot create a local cusp in the curve, that is, we cannot create a sharp corner unless we create it at the beginning or end of a curve where it joins another curve. Finally, it is not possible to keep the degree of the B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structural and Multidisciplinary Optimization
سال: 2020
ISSN: 1615-147X,1615-1488
DOI: 10.1007/s00158-020-02553-z